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Abstract

Let Bn be the number of non-isomorphic marked arrangements of n pseudolines. We

demonstrate that Bn ≥ 2cn2−O(n log(n)) for some c > 0.2144, exceeding the previous best

lower bound c > 0.2083 by Dumitrescu and Mandal (2020). The problem of estimating

Bn was first posed by Goodman and Pollak in 1983. They established the lower bound

Bn ≥ 2
n2
8 . Knuth improved the lower bound to Bn ≥ 2

n2
6 −O(n) and found the upper bound

Bn≤ 3(
n
2)≈ 20.792n2

. The upper bound has also since been improved upon, most recently

by Felsner and Valtr in 2011. They discovered that Bn ≤ 20.657n2
for sufficiently large n.

The argument used in this thesis is based on gluing together partial arrangements

that are consistent with some outside behavior, which we make precise using boundary

bipermutations. For each of these “patches” we then calculate the number of partial

arrangements consistent with that outside behavior using an algorithm that is also pro-

vided. From this the bound follows using known techniques.
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1 Introduction

Arrangements of lines and hyperplanes are simple and natural objects both in projective and
euclidean space and have been studied for hundreds of years in discrete and computational
geometry. In [8] Levi generalized arrangements of lines by introducing arrangements of
pseudolines, which behave like lines topologically, but not necessarily geometrically. A
good exposition on arrangements of lines and pseudolines was given by Grünbaum in [6]. In
this thesis we will focus on arrangements of pseudolines in euclidean space.

An arrangement of pseudolines in R2 is a finite family of simple curves, each of which
approaches infinity in both directions and any two of which intersect in exactly one point,
where they cross. It is called simple if no three pseudolines intersect in a point. A marked

arrangement is an arrangement together with a distinguished unbounded north-cell. Two
marked arrangements are isomorphic if one can be mapped to the other by an orientation
preserving homeomorphism of the plane that also preserves the north-cell. (See Definitions 1
and 2 for more detail.)
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Figure 1: Two non-isomorphic marked arrangements. The north-cell is distinguished by a cross.

An arrangement is called stretchable if it is isomorphic to an arrangement of straight lines.
A natural question to ask is whether every arrangement of pseudolines is stretchable. To
see why this is not the case, consider the arrangement of lines in Figure 2. The points X ,Y

and Z must lie on a line f by Pappus’s theorem. By perturbing the central line f around Y ,
we create an arrangement of pseudolines that cannot be isomorphic to any arrangement of
lines. This argument comes from [8]. We get a simple arrangement with the same property
by perturbing f in the other direction around X ,Z and shifting a few of the lines in a way
which only moves the intersection points X ,Z and Y in the direction of the perturbation of
f , see Figure 2. In fact, there are many non-stretchable arrangements. So many, that the
number Bn of non-isomorphic arrangements of n pseudolines grows as 2Θ(n2) (a lower bound
is given in [5, Proposition 6.2], an upper bound can be derived from [2, Theorem 2.7]),
while the number of non-isomorphic arrangements of n lines only grows as 2O(n logn) [10,
Chapter 6.2]. In particular, the number of arrangements of lines represents a fraction of the
total number of arrangements that tends to zero as n tends towards infinity.
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Figure 2: Non-stretchable arrangements. Left: An arrangement resulting from the perturbation of the central
line in a Pappus arrangement. Right: A simple version of the same idea.

Our goal in this thesis is to learn more about the growth rate of Bn. In particular, we want
to bound the multiplicative factor of the leading term of bn := log2 Bn = Θ(n2). That is the
number

csup := sup{c ∈ R |bn ≥ cn2 for all sufficiently large n ∈ N}.

A lot of work has been done on this question already, starting with Goodman and Pollak in
[5], where they established the lower bound csup ≥ 1

8 . In [7, Section 9] Knuth proved the

upper bound Bn ≤ 3(
n+1

2 ) giving us csup ≤ 1
2 log2(3) ≈ 0.79. This was achieved by bound-

ing the number γn of ways a new pseudoline ℓ can be inserted into an arbitrary existing
arrangement A of n pseudolines, such that ℓ starts in the north cell, ends in the south-cell
and introduces no multi-crossings. Each such possibility is called a cutpath. Since every ar-
rangement of n+1 pseudolines can be constructed in this way we have Bn+1 ≤ γnBn. Knuth
showed γn≤ 3n, from which the bound can be gotten through induction. The bound on γn has
since been sharpened. In particular in [4], where γn ≤ 4n · 2.486976n was shown, yielding
csup ≤ 0.6571, the current best upper bound. The current best lower bound csup > 0.2083
was established by Dumitrescu and Mandal in [1].

In this thesis we establish the new lower bound csup > 0.2144. The approach used is
in the spirit of those employed in [1] or [4, Section 4]. One starts with a partial arrange-
ment of n straight lines, that are separated into k strips of parallel lines, see for example
Figure 4. Now one constructs arrangements of pseudolines, by considering the interaction
within and between strips separately. First one bounds from below the number Fk(n) of ways
the pseudolines from different strips can intersect while remaining consistent with the global
behavior of the lines. Then this bound is applied recursively to the lines within each strip,
see Lemma 2.

What sets our approach apart is the method we use to lower bound Fk(n). It is based on
separating the region of intersection of the strips into sub-regions (or “patches”) of constant
size. For each patch we calculate the exact number of ways the pseudolines can interact
within the patch without changing the behavior at its boundary. This is done computationally

2



using the algorithm we provided. We then multiply the results to get a lower bound on Fk(n).

All of this is fleshed out in Section 2.3, where we describe in detail the strategy that was
used to get our bound, as well as some older bounds. Before that, in Section 2.1, we define the
objects that will be used. In particular arrangements and partial arrangements of pseudolines
as well as boundary bipermutations will be defined there. We then use Section 2.2 to show
a few basic properties of partial arrangements. In Section 3 we review the most common
ways to represent arrangements combinatorially and look at previous approaches to bounding
csup. This section is not necessary to understand the proof of the main theorem, but could
be helpful to place our approach in relation to previous work in the subject. Finally, in
Section 4.1 we prove the lower bound using the methods outlined above. In the proof we use
constants from Tables 1 2 that were determined using the algorithm explained in Section 4.2.

2 Preliminaries

We begin the main body of this thesis with Section 2.1 by providing the definitions of the
objects we will use, including arrangement, partial arrangement and boundary bipermuta-
tion. Then, in Section 2.2, we prove some results about partial arrangements which are
fundamental for the proof of the main theorem, Theorem 3. The main result needed for the
new bound is Corollary 2.3, which ensures that all of the arrangements we will construct
are non-isomorphic. Theorem 1 is not needed for the new bound, but may be of interest in
itself. Finally, in Section 2.3 we explain how to obtain non-isomorphic arrangements from
particular partial arrangements of straight lines, ending on the important Lemma 2, which
will also play a central role for the new bound.

2.1 Basic Definitions

Even though we have had a rough explanation of arrangements of pseudolines in the intro-
duction, a more precise definition is needed and provided here. Usually it is not useful to
define a pseudoline by itself, as it is the interaction between pseudolines within an arrange-
ment that is of interest. In this case it makes sense, since pseudolines will feature in the
definitions of both arrangements and partial arrangements of pseudolines.

Definition 1. A pseudoline in R2 is a simple curve approaching infinity in both directions.

More precisely it is an equivalence class of continuous injections γ : R→ R2 that satisfy

limt→±∞ ∥γ(t)∥= ∞, where two functions γ1,γ2 are considered equivalent if and only if there

exists a homeomorphism τ : R→ R such that γ1 = γ2 ◦ τ . (Similarly one can define the
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notion of an oriented pseudoline by requiring the homeomorphisms τ to be increasing.) To

avoid pathological cases we will also require pseudolines to coincide with rays (one in each

direction) outside of some bounded region.

Definition 2. A finite family of pseudolines is called an arrangement if each pair of pseu-

dolines intersects in exactly one point, where the pseudolines cross. It is called simple if no

three lines intersect in a point.

An arrangementA separates the plane into vertices (intersection points), edges (pseudoline
segments) and cells (connected components of R2 \

⋃
A). A marked arrangement is an

arrangement with a distinguished unbounded cell called north-cell. In a marked arrangement,
there exists exactly one south-cell, which is separated from the north-cell by every pseudoline
in the arrangement. We obtain a natural orientation on the pseudolines by demanding that
the north-cell be to the left and the south-cell to the right of each oriented pseudoline. Two
marked arrangements are considered isomorphic if they can be transformed into each other
by a homeomorphism of the plane, which preserves both the north-cell and the orientations
of the pseudolines.

From now on, “arrangement” will always refer to an equivalence class of marked arrange-
ments, unless specified otherwise. If the north cell is not specified, assume it is the cell that
is unbounded in the positive y-direction from (0,0).

Definition 3. A partial arrangement of pseudolines is a finite family of pseudolines, any

two of which may intersect and cross once or not intersect at all. Simpleness is defined the

same way it is with arrangements.

Let A = {ℓ1, . . . , ℓn} be a partial arrangement of n pseudolines. There are only finitely
many crossings and bounded edges in A. Let U ⊂ R2 be some open, bounded, convex
region containing all of them and containing exactly one section of each pseudoline. A disc
centered at the origin with sufficiently large radius always satisfies these conditions, because
there are only finitely many pseudolines and we required each to coincide with rays outside
of some bounded region. We can distinguish one point p ∈ ∂U \

⋃
i∈[n] ℓi on the boundary of

U and call it the north-pole, which gives rise to the notion of a marked partial arrangement

(A,U, p).

Let C be the unbounded cell containing p. We will call C the north-cell of the marked
partial arrangement. Note however, that there may be no south-cell that is separated from the
north cell by every pseudoline. In fact, it may even be the case, that R2 \C is disconnected,
as the partial arrangement of two parallel lines shows. Nonetheless we can define a natural
orientation on the pseudolines by demanding that the north-cell is to the left of every one of
them. We will call two marked partial arrangements (A,U, p), (A′,U ′, p′) isomorphic, if one
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can be transformed into the other by a homeomorphism of the plane that preserves the natural
orientations of the pseudolines and maps U to U ′ and p to p′. If R2 \C is connected, we may
define a marked partial arrangement by specifying the north-cell instead of the north-pole
and U .

Starting at p we can walk around the boundary of U (in clockwise direction) and record
the order in which the pseudolines cross it. The resulting object will be a map σ : [2n]→ [n],
which attains every value in [n] exactly twice, a bipermutation.

Definition 4. We will call σ the boundary bipermutation (or just bipermutation) of A.

Let S(2)n := {σ : [2n]→ [n] |σ is a bipermutation} denote the set of all bipermutations on

n elements. Partial arrangements with a given boundary bipermutation σ will be called

consistent with σ .

For any σ ∈ S(2)n let Bσ denote the number of non-isomorphic partial arrangements that are
consistent with σ . There are a few notable operations on bipermutations that leave Bσ un-
changed. A cyclic shift on a bipermutation σ = (a1, . . . ,an) maps it to a bipermutation of the
form σ ′=(ak, . . . ,an,a1, . . . ,ak−1). It corresponds to choosing a different north-pole in a par-
tial arrangement. Very similarly, a re f lection maps σ to (an,an−1, . . . ,a1) and corresponds
to a reflection of the plane. Finally, a relabeling of σ will have the form (π(a1), . . . ,π(an)),
where π ∈ Sn is a permutation of the n labels of the pseudolines.

∂U

1

2

3

24 1

3

5

4

5

Figure 3: A partial arrangement with boundary bipermutation (1,2,3,4,3,1,5,2,5,4). Note that it is not of the
form (1,2,3,. . . n,. . . ). The north-cell is marked by a cross. In this partial arrangement there exists no cell that
is separated from the north-cell by every pseudoline.

Definition 5. Let A be a partial arrangement. Given an open, bounded, convex region U

that contains at most one section of each pseudoline and such that ∂U contains no crossings

as well as a point p ∈ ∂U we can define the marked partial arrangement (B,U, p) induced
by A and U as follows.
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The pseudolines in B correspond to those pseudolines in A that intersect U. B coincides

with A on U and there are no crossings of pseudolines of B outside of U. This can be

achieved by extending the restricted pseudolines from ∂U as rays from a common point in

U. We can now choose p as the north-pole of the marked partial arrangement.

Note that, while A has to be one specific partial arrangement, the induced partial arrange-
ment is only unique up to isomorphism outside of U . We will however still write the induced
partial arrangement, since the behavior of the pseudolines outside of U is not interesting to
us.

2.2 Some Properties of Partial Arrangements

In this section we show some basic results about partial arrangements. In particular, we show
that any bipermutation is realized by at least one partial arrangement and that any partial
arrangement can in some sense be extended into a full arrangement of pseudolines. Finally
we show that a change done to an arrangement in one region cannot be undone outside of
that region, which is needed for our proof of the new bound, Theorem 3.

Proposition 1. For any bipermutation σ ∈ S(2)n there exists at least one consistent simple

partial arrangement. In particular Bσ ≥ 1.

Proof. Consider a disc U centered at the origin, with 2n equally spaced points around its
boundary. Starting at the top, we can label the points according to σ . We will connect two
points with the same label using a straight line. We then continue the lines using rays pointing
away from the origin. This yields a potentially non-simple arrangement of pseudolines. It
can be simplified by resolving multi-crossings locally.

Proposition 2. The boundary bipermutation of a partial arrangement completely determines

whether two pseudolines in the partial arrangement cross.

Proof. Let σ ∈ S(2)n be a bipermutation. Let (A,U, p) be a partial arrangement consistent
with σ and let ℓa, ℓb be two pseudolines in A. By the Jordan Curve Theorem the pseudoline
ℓa separates U into two disconnected halves. If a and b appear in σ in a cross-configuration
(i.e. abab or baba) then the intersections of ℓb and ∂U lie on different halves of U and the
pseudolines must cross. If they appear in a parallel configuration (i.e. abba, aabb,. . . ) then
the pseudolines cannot cross, or they would have to cross twice.

We will say that two elements a,b ∈ [n] cross in σ ∈ S(2)n if they appear in a cross-
configuration (i.e. abab or baba). That is if, in consistent partial arrangements, the pseu-
dolines corresponding to a and b cross.

6



Lemma 1. Let σ ∈ S(2)n be some bipermutation that has at least one pair of non-crossing

elements. Then σ also has a pair of neighboring elements that do not cross. We call c,d ∈ [n]
neighboring if there exists an index i ∈ [2n−1] with σ(i) = c, σ(i+1) = d or if σ(2n) = c,

σ(1) = d.

Proof. Let a,b ∈ [n] be two non-crossing elements in σ . We can assume σ to be of the form
(a, . . .b, . . .b, . . .a, . . .) otherwise do a cyclic shift, which will not change whether elements
cross or neighbor each other. Let i be the last index in the stretch (a, . . .b), excluding b, such
that c := σ(i) does not cross b. In particular c’s direct neighbor d := σ(i+1) either crosses
b or is itself b. In the second case c and b are non-crossing neighbors and we are done.
Otherwise we can shift the bipermutation to reach the form (c, . . .c,d, . . .b, . . .b, . . .). Since
d crosses b, its second appearance has to be between the two appearances of b. Therefore it
cannot cross c.

Theorem 1. Any partial arrangement can be transformed into a full arrangement by repeat-

edly crossing unbounded edges.

Proof. LetA be a partial arrangement of n pseudolines and let σ be its boundary bipermuta-
tion. IfA is an arrangement, we are done. Otherwise Proposition 2 ensures that there are two
neighboring pseudolines that do not cross. We can create a new partial arrangement A′ by
crossing those pseudolines in the unbounded cell, where they neighbor each other. Since A
was chosen arbitrarily and A′ has strictly more crossings than A, we can do this repeatedly
until there are no pairs of non-crossing pseudolines left and we reach an arrangement.

Corollary 1.1. Let A be a partial arrangement of n pseudolines and let U be a disc con-

taining all of the crossings in A. Then there exists a full arrangement of n pseudolines, that

coincides with A on U.

The strategy used in the proof of the new bound can be described as stitching together
partial arrangements to get full arrangements. We want these full arrangements to be non-
isomorphic if we start with non-isomorphic patches. For this to work we need to ensure that
a change in one of these patches cannot be undone somewhere else. This is expressed in the
following theorem.

Theorem 2. Let A = {ℓ1, ℓ2, . . . ℓn}, A′ = {ℓ′1, ℓ′2, . . . ℓ′n}, n ∈ N be two isomorphic marked

arrangements with isomorphism Φ : R2→ R2, such that Φ(ℓi) = ℓ′i for all i ∈ [n].

Let U be an open, bounded, convex region that contains at most one section of each pseu-

doline (from both A and A′) such that ∂U does not contain intersections of pseudolines and

such that A and A′ agree on ∂U, meaning ℓi∩∂U = ℓ′i∩∂U for all i ∈ [n]. Let p ∈ ∂U be

an arbitrary point on the boundary of U.
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Let B, B′ be the partial arrangements that are induced by A and A′ on U. Then B and B′

are isomorphic.

Proof. We need to construct a homeomorphism Φ̃ : R2 → R2 that preserves U and p and
maps the pseudolines in B to those in B′. We will do this by showing, that there exists a
homeomorphism Ψ that transforms Φ(U) into U and Φ(p) into p while preserving all of the
pseudolines in B′ (as well as their orientations). Then Φ ◦Ψ is an isomorphism between B
and B′.

Since ∂Φ(U) intersects the same pseudolines in A′ in the same order when starting from
Φ(p) as ∂U does starting from p, we know that Φ(U) and U contain sections as well as
crossings of the same pseudolines. In particular, if Φ(U)∩U = /0 then U contains no in-
tersections and the statement of the theorem is trivially true. Otherwise we have that all
crossings and a section of each pseudoline in B′ lie in Φ(U)∩U . Hence the symmetric
difference Φ(U)\U ∪U \Φ(U) only contains segments of pseudolines that run directly be-
tween ∂Φ(U) and ∂U without crossing other pseudolines. Therefore there is nothing within
the symmetric difference preventing us from continuously transforming from Φ(U) to U and
back without effecting the pseudolines.

On the other hand, there are only finitely many crossings of pseudolines from B′, none of
which lie on ∂Φ(U)∪∂U . Since both the set of crossings and the boundaries are compact,
there is some distance d > 0 between the two sets. Further, because there are only finitely
many pseudolines, there is some 0 < ε ≤ d such that

⋃
x∈∂Φ(U)∪∂U Uε(x) only contains pseu-

doline segments, that are connected to ∂Φ(U)∪ ∂U . (If this were not the case, the closure
of those sections would again be a closed set that is disjoint from ∂Φ(U)∪ ∂U and there
would be a positive distance.) Therefore we can continuously transform between Φ(U) to U

without obstruction.

Corollary 2.1. With the same requirements as above (except for A, A′ being isomorphic), if

B, B′ are non-isomorphic, then A, A′ also cannot be isomorphic.

Corollary 2.2. For any bipermutation σ ∈ S(2)n there are at most Bn partial arrangements

consistent with σ . In other words we have Bσ ≤ Bn.

Corollary 2.3. Let A be a marked arrangement and let U1, . . .Un, n ∈ N be a number of

disjoint, open, bounded, convex regions such that each contains at most one section of each

pseudoline and whose boundaries contain no crossings of pseudolines and touch no pseudo-

lines. For all i ∈ [n] let pi ∈ ∂Ui be some point on the boundary of Ui and let Bi, σi be the

partial arrangements and their bipermutations induced by A on Ui.

Exchanging any collection of the Bi with a non-isomorphic partial arrangements with the

same bipermutation leads to an arrangement A′ that in not isomorphic to A. In particular,
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we have

∏
i∈[n]

Bσi ≤ Bn.

2.3 Arrangements Based on Partial Arrangements of Straight Lines

We end Section 2 by turning our attention to a general strategy used to construct and count
non-isomorphic arrangements. Later we will use it to prove a new lower bound on csup. The
same strategy has been employed before in [1] and [4, Section 4]. The new aspects of our
approach will be covered in Section 4.

Let k∈N, k≥ 3 be fixed once and for all. For any n∈N we start with a partial arrangement
of n straight lines, most of which are organized into k strips of m equidistant parallel lines
each, such that n = km+ r for some r that satisfies 0≤ r < O(1) when viewed as a function
of n. For convenience we will suppress the dependence of both r and m on n. The r unused
lines will not contribute to the bound and can be safely inserted into the arrangement at the
end. Given the natural labeling of the lines shown in Figure 4 the partial arrangement will
have a boundary bipermutation σ of the form

σ = (1,2,3, . . .n,m,m−1, . . .1,2m,2m−1, . . .m+1, . . .km, . . .(k−1)m+1).

Next we bound from below the number Fk(n) of simple partial arrangements that are consis-
tent with σ . Finally, we need to consider the m pseudolines corresponding to the lines within
each strip. To get an arrangement, these pseudolines will have to cross as well. We will
assume that those crossings will happen independently outside of some region U containing
all of the crossings of lines from different strips, see Figure 4. The number of arrangements
T (n) := Bn then satisfies

T (n)≥ Fk(n)T (m)k. (1)

1 2 3

4

5

6

789321

6

5

4

9 8 7

∂U ∂U

Figure 4: Left: A partial arrangement of k ·m = 9 straight lines organized into k = 3 strips of m = 3 lines
each. Right: One possible arrangement arising from the construction described above. The crosses mark the
respective north-cells.
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Recursively applying the bound on Fk(n) to the strips yields an improved bound on T (n).
This contribution is quantified by the following lemma. It seems to have been used implicitly
in proofs of previous lower bounds.

Lemma 2. Using the terms defined above, if Fk(n)≥ 2c′n2−O(n), for some c′ > 0 then

T (n)≥ 2
k

k−1 c′n2−O(n logn). In particular csup ≥ k
k−1c′.

Proof. Let c := k
k−1c′ and let L ≥ 0 be a constant such that Fk(n) ≥ 2c′n2−Ln for all n ≥ 1.

Further let R≥ 0 be a constant, with which n−R≤ km≤ n is satisfied for all n≥ 1. Define
L̃ := L+2 c

k R and G(n) := L̃n logk(L̃n) for all n≥ 1. We show by induction, that for all n≥ 1

T (n)≥ 2cn2−G(n). (2)

As a base case consider n = 1, . . .k. We can assume inequality (2) to be satisfied, otherwise
we increase L. For the induction step we get

log2 T (n)
(1)

≥ log2

(
Fk(n)T (m)k

)
≥ c′n2−Ln+ k

(
cm2−G(m)

)
= c′n2−Ln+

c
k
(km)2− kG(m)

≥ c′n2−Ln+
c
k
(n−R)2− kG(m)

= c′n2 +
c
k

n2−Ln−2
c
k

Rn− kG(m)+
c
k

R2,

where we used the induction hypothesis in the second step. Splitting this sum up, we have

c′n2 +
c
k

n2 =

(
k−1

k
+

1
k

)
cn2 = cn2.

Furthermore we have

Ln+2
c
k

Rn+ kG
(⌊n

k

⌋)
= L̃n+ kL̃

⌊n
k

⌋
logk

(
L̃
⌊n

k

⌋)
≤ L̃n+ L̃n logk

(
L̃
⌊n

k

⌋)
= L̃n

(
1+ logk

(
L̃
⌊n

k

⌋))
= L̃n logk

(
L̃k

⌊n
k

⌋)
≤ L̃n logk(L̃n)

= G(n).
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And lastly, because c,k > 0, we have

c
k

R2 ≥ 0.

Taking all of this into account, it follows that log2 T (n)≥ cn2−G(n).
Since G(n) ∈ O(n logn) this proves the lemma.

3 Background

There are many ways to encode arrangements of pseudolines. In this section we review three
of them and look at how some of them were applied to get bounds on csup. This section is not
necessary to understand the proof of the new lower bound. Instead it serves as background
information that may help to evaluate the method used in this thesis and compare it to other
related works.

3.1 Combinatorial Representations of Arrangements

Local sequences. Let A be a simple arrangement of n pseudolines. To each pseudoline ℓi in
A associate its local sequence, a permutation ai of [n] \ {i} that records the order in which
ℓi crosses the other pseudolines. The family (ai)i∈[n] is called the family of local sequences
of A and is both uniquely determined by A and uniquely determines A [3, Theorem 6.6].
However, not every family of local sequences corresponds to an arrangement, as the example
a1 = (2,3,4), a2 = (1,4,3), a3 = (1,∗,∗), a4 = (1,2,3) shows.

Wiring diagrams. Three closely related representations of simple arrangements are wiring

diagrams, allowable sequences and reflection networks. Reflection networks are sequences
of adjacent transpositions that transform tuples (x1, . . .xn) into their reflections (xn, . . .x1) [7,
Section 8]. Composing the first i of those transpositions yields a sequence of permutations
of [n], the first one being the identity and the last one being the reverse permutation (n,n−
1, . . .1). Such a sequence is called an allowable sequence if each pair of elements a,b ∈ [n]

reverses their order exactly once [3, Section 6.2].

A wiring diagram is a standardized drawing of an arrangement, from which the corre-
sponding allowable sequence and reflection network be read off easily. In it pseudolines are
restricted to a set of horizontal lines (wires) except for the regions where they cross. Each
crossing should happen in a distinct vertical strip, see Figure 5. We can get a wiring diagram
from any simple marked arrangement, by sweeping it [3, Chapter 6.1 and 6.2]. Start with
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a curve α1 with endpoints p1 in the south-face and p2 in the north-face, that only passes
through unbounded faces or edges. Construct the next curve αi+1 by passing αi over exactly
one new vertex of the arrangement and repeat until all vertices have been passed over. Each
curve αi crosses the pseudolines in some order, which corresponds to the i-th permutation of
the related allowable sequence, assuming the pseudolines to be labeled in such a way, that
α1 crosses them in ascending order. The orders of two consecutive curves αi,αi+1 differ
by an adjacent transposition. We can now draw the arrangement as a wiring diagram by
crossing the pairs of lines corresponding to these transpositions in the x ∈ [i, i+1) strip. We
get the related reflection network by recording the transpositions in the order in which they
appear. Note that none of these representations are uniquely determined by the arrangement,
as shown in Figure 5.

p2

p1

α1

α2

α3

α4

α5

α6

α7 α1 α2 α3 α4 α5 α6 α7

1

2

3

4

1

2

3

4

Figure 5: Left: A sweep of an arrangement. Right: The corresponding wiring-diagram. The reflection network
[1,2][3,4][2,3][1,2][3,4][2,3] can be read off of the wiring-diagram by looking at the wire-crossings. Note that
for example the first two crossings could be swapped, yielding an equivalent but different reflection network.

Zonotopal duals. This last representation is particularly nice. The zonotopal dual of an
arrangement is a particular zonotopal tiling. To explain these notions we first review some
basic concepts. A zonotope in the plane R2 is defined as the Minkowski sum of a set of
n line segments. It is easy to see that it is a centrally symmetric 2n-gon, where opposing
sides correspond to one of the line segments. By a translation we will assume the center to
be at the origin. Consequently we arrive at the following form Z(V ). For a set of vectors
V = {v1, . . .vn} ⊂ R2 define the zonotope

Z(V ) := {
n

∑
i=1

civi |ci ∈ [−1,1]}= [−v1,v1]+ . . .+[−vn,vn],

where + denotes the Minkowski sum of the line segments [−vi,vi]. A zonotopal tiling of
Z(V ) is a covering of Z(V ) using translates (but no rotations) of zonotopes Z(Vi), where
Vi ⊂ V , such that any two distinct zonotopes of the tiling intersect in a common edge or
vertex. We remark that a zonotopal tiling defines a drawing of a graph, with zonotopes as
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faces.

The zonotopal dual of a (possibly non-simple) arrangement is a zonotopal tiling whose
underlying graph is the dual graph of the arrangement, see Figure 5. We remark that the
boundary of the unbounded face of the dual graph is formed by the edges of the zonotope
Z(V ) and that the bounded faces form the zonotopal tiling of Z(V ). Note that the number of
edges of a face of the dual graph corresponds to twice the multiplicity of the corresponding
intersection of pseudolines in the arrangement. Therefore the zonotopal dual of an arrange-
ment will be a rhombic tiling if and only if it is a simple arrangement. Zonotopal tilings are
in one to one correspondence with arrangements of pseudolines. This, as well as existence
and uniqueness of zonotopal duals, is proved in [3, Chapter 6.4].

Figure 6: Left: An arrangement with its dual graph. Right: The dual graph as a zonotopal tiling.

3.2 Some Previous Lower Bounds

The first approach we are going to look at was sketched in [10, Chapter 6.2] and is the most
straightforward. We start with n lines and make 3 strips of m lines each, where m :=

⌊n
3

⌋
or m :=

⌊n
3

⌋
−1, whichever is odd. The remaining r = n−3m lines will not be considered.

Here we have 0 ≤ r ≤ 5, in particular r is bounded as function of n. The strips should have
slopes 1,−1 and 0. The lines with slopes −1 and 1 form a regular grid. We choose the
horizontal lines in such a way that we obtain only triple intersections. Then the horizontal

lines pass through a total of m+2∑

m−1
2

k=1(m−k) = 3m2+1
4 grid vertices, compare Figure 7. We

now construct simple partial arrangements by resolving the three-wise crossings locally. For
every three-wise crossing we have a choice to route the horizontal line above or below the
grid vertex, which gives us the lower bound F3(n) ≥ 2

3m2+1
4 = 2

3
4

n2
9 −O(n) = 2

n2
12−O(n) on the

number of options. With c′ := 1
12 and Lemma 2 we get the bound csup ≥ 1

8 = 0.125.

One way to improve on this bound is to stick with three strips of lines, but sharpen the
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Figure 7: A possible simple partial arrangement resulting from local perturbations of the horizontal lines in a
construction using three strips.

bound on F3(n). This was done by Felsner and Valtr in [4] who not only bounded, but exactly
determined F3(n) using the zonotopal duals of specific partial arrangements. The zonotopal
duals of simple partial arrangements that are consistent with the three strip construction are
exactly the rhombic tilings of a centrally symmetric hexagon H(m,m,m) with side lengths
m [4, Section 4]. A more general problem, the enumeration of rhombic tilings of H( j, i,k),
was solved by MacMahon [9]. There are

PP(i, j,k) =
i−1

∏
a=0

j−1

∏
b=0

k−1

∏
c=0

a+b+ c+2
a+b+ c+1

of these tilings. This can be approximated, yielding

log2 F3(n) = log2 PP(m,m,m)≈ log2 e(
9
2 ln3−6ln2)m2

=

(
9
2

ln3−6ln2
)

log2 e
9

n2−O(n).

Using Lemma 2 we get the lower bound csup ≥ (9
2 ln3−6ln2) log2 e

6 > 0.1887, which was the
best bound at the time.

Since F3(n) was not just bounded but determined exactly, this approach exhausts the po-
tential of constructions with three strips of lines. Another strategy to improve the first ap-
proach is to keep resolving the multi-crossings locally, but consider constructions with more
strips. This was done by Dumitrescu and Mandal in [1]. Here setups with 4,6,8 and 12
strips were considered, see Figure 8. A crossing of i lines in one point can be resolved in Bi

non-isomorphic ways. By carefully counting the number λi(n) of i-wise crossings, a bound
Fk(n) ≥ ∏

k
i=3 Bλi(n)

i is obtained. The best resulting lower bound comes from a twelve strip
construction, which yields csup > 0.2083.
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Figure 8: A construction using 12 strips. The labels ℓi show the outermost lines in each strip. The numbers
indicate how many strips overlap in each region. This Figure is copied from [1].

4 A New Lower Bound

The general idea for the construction described below arose due to a comment by Rote to
Felsner, suggesting that Dumitrescu and Mandal could have used larger patches to resolve the
multi-crossings in their construction, instead of doing so locally. My task for this bachelor’s
thesis was to put this idea into action. This will be done in Section 4.1. In Section 4.2 we
explain an algorithm that computes the number Bσ of partial arrangements consistent with
any given bipermutation σ . Some constants computed using this algorithm will feature in
the proof of the new bound.

4.1 Main Theorem

We begin this section by outlining the idea. We employ the same strategy that was explained
in Section 2.3, this time with a construction using k = 4 strips. For n ∈ N>4 let m := ⌊n

4⌋
or m := ⌊n

4⌋−1 whichever is odd. We have r := n−4m ≤ 8, a constant. The four strips of
m lines should have slopes 0,∞,1 and −1 and should be arranged as is shown in Figure 9.
In particular the primary lines which have slopes 0 or ∞ form a grid with the grid vertices
coinciding with lattice points (i, j), i, j ∈ N and the secondary lines of slope 1 or −1 form a
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grid where grid vertices lie on points of the form (i, j) or (i± 1
2 , j± 1

2), i, j ∈ Z.

All of the multi-crossings lie within the region [0,m−1]2. Our plan is to split this region
into a number Nm ∈ N of smaller patches Ui, i ∈ [Nm], which will be considered separately.
As we will see in the proof of Theorem 3, there will be only two types of patches Ui, each
type of fixed size. The green regions in Figure 10 are examples of patches Ui, as we will see
below. Each Ui induces a partial arrangement. It is obtained by taking the intersection of the
lines with Ui and extending the resulting curves by rays starting from a shared point in the
interior of Ui. Let σi denote the boundary bipermutation of that partial arrangement. Since
the lines in the induced partial arrangement only cross within Ui, the bipermutation σi can
be read off from the boundary of Ui. We can now resolve the multi-crossings within Ui by
exchanging the line segments on Ui with any partial arrangement consistent with σi. This can
be done independently for each Ui. Each choice yields an inequivalent partial arrangement
of all of the pseudolines and we obtain the bound F(n) := F4(n)≥∏

Nm
i=1 Bσi .

4

3

3 3

3

Figure 9: Left: The construction using four strips, each containing m = 7 lines. Right: The regions R3,R4, in
which 3 or 4 strips overlap. The square [0,m−1]2 is shown in blue. This figure is inspired by a similar one in
[1].

Theorem 3. The number Bn of non-isomorphic simple pseudoline arrangements satisfies

the inequality Bn ≥ 2cn2−O(n logn) with c > 0.2144. In particular we have Bn ≥ 2cn2
for all

sufficiently large n.

Proof. Consider the partial arrangement of 4m lines that was described above. Let Ri, i= 3,4
be the region covered by exactly i strips and let ai be the area of that region, see Figure 9. It
is easy to see that a3 = a4 =

(m−1)2

2 . We will look at R3 and R4 in more detail, separately.

Let R′3 be one triangular part of R3 with area a′3 = a3
4 . We will cover it using squares

[i, i+ q]× [ j, j+ q], i, j ∈ N of size q ∈ N, see the square of side length q in Figure 10. (To
avoid crossings on the boundary of the squares, they will be shifted towards the right angled
corner of R′3 by a small amount.) Each of these squares induces a partial arrangement. We
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q

p
√
2
2

Figure 10: A four strip construction with m = 9 lines per strip. In green, the types of squares we use to cover
R3 and R4. Here we chose q = 2 and p = 4.

will arbitrarily choose the top left corner of each square as its north-pole. Clearly, all the
squares completely contained in R′3 lead to isomorphic partial arrangements, as one can be
transformed into the other by a translation of the plane. In particular, all the induced partial
arrangements have the same bipermutation, up to relabeling of the pseudolines. Furthermore,
if we cover the other components of R3 in the same fashion, the resulting partial arrangements
will also be isomorphic, this time by rotation as well as translation. As a result, all the
bipermutations of squares contained in R3 are the same up to cyclic shift and relabeling. In
particular, each has the same number Bσ3(q) of consistent partial arrangements, where σ3(q)

is one representative of the set of bipermutations induced by squares completely contained
in R3.

We will now count the number λ3(n) of these squares. Let s denote the area of R′3 not
covered by squares that are completely contained in it, see the dark red area in Figure 11.
From the figure it is immediately clear, that s is less than 2(m−1

2 + q)q ∈ O(n). Therefore
there are a′3−s

q2 =
a′3
q2 −O(n) = 1

27q2 n2−O(n) of these squares in R′3. Since there are four such
regions the total number of squares is λ3(n) := 1

25q2 n2−O(n).

Now consider R4. We will cover it using squares that align with the grid of secondary lines,
see Figure 10. Each square should cover p2 secondary grid vertices each, where p is even.
The side lengths of the squares will be p

√
2

2 . We will choose the left most corner of each
square as its north-pole. Again the induced bipermutations corresponding to each rectangle
only differ by relabeling, because one induced partial arrangement can be translated onto the
other. Let Bσ4(p) be the number of partial arrangements consistent with these bipermutations.
The number of rectangles completely contained in R4 is λ4(n) := ⌊m−1

p ⌋
2 = 1

24 p2 n2−O(n).
(Alternatively we can use an argument similar to the one we used for R′3, also yielding
λ4(n) =

a4(
p
√

2
2

)2 −O(n) = 1
24 p2 n2−O(n).)
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We can replace each part of the arrangement of straight lines covered by one of the squares
by any partial arrangement consistent with the corresponding bipermutation. The result will
always be a legal arrangement, because Proposition 2 ensures, that the same pseudolines
cross in the modified region. Furthermore, each choice produces non-isomorphic arrange-
ments by Corollary 2.1. All in all we have

log2 F(n)≥ log2

(
Bλ3(n)

σ3(q)
·Bλ4(n)

σ4(p)

)
= n2

(
log2(Bσ3(q))

25q2 +
log2(Bσ4(p))

24 p2

)
−O(n). (3)

Inequality (3) holds for any q and even p, but to produce a bound we also need to determine
Bσ3(q) and Bσ4(p) for those q, p we want to use. We have done that computationally, as will
be explained in Section 4.2. Here we will just use their computed values for q = 10 and
p = 8. They are Bσ3(q) ≈ 1.96 ·1039 and Bσ4(p) ≈ 1.02 ·1037. The exact values of Bσ3(q) and
Bσ4(p) for these and some other choices of p, q can be found in Tables 1 and 2. Inserting the
values into inequality (3) yields the bound log2 F(n) ≥ 0.1608n2−O(n). Finally we apply
Lemma 2, which yields the bound Bn ≥ 2cn2−O(n logn) for some c > 0.2144.

m−1
2

q

(m− 1)
√
2
2

p
√
2
2

Figure 11: Left: A partial covering of R′3 with (grey) squares of side length q. Right: A partial covering of R4

using squares of side length p
√

2
2 .

4.2 Algorithm to Calculate Bσ

Of course the above approach would not have worked without knowing Bσ for a few specific
σ . In this section we explain Algorithm 1, which calculates Bσ for any bipermutation σ . It
employs a divide-and-conquer strategy by splitting the problem along one pseudoline (see
Figure 12) and solving the resulting subproblems recursively before recombining the results
arithmetically.

A simpler approach, inserting the pseudolines into the partial arrangement one by one
and thereby explicitly constructing all the consistent partial arrangements, only terminates in
reasonable time for regions in R4 of side length at most 4 to 6. In a conversation Scheucher
suggested exploiting the grid structure in R4 to go from 4×4 regions to 4×8 and potentially

18



even larger regions. (The proof of Theorem 3 also works with rectangular regions instead of
squares.) To do this, one would split the 4× 8 region into two 4× 4 squares and construct
all possible orders in which the pseudolines could exit the first square and enter second one.
Each such possibility yields boundary bipermutations for the two squares. For each order,
the number of consistent partial arrangements in the two squares would be calculated and
multiplied. Since the number of ways the pseudolines can cross from one square into the
other is much lower than the number of consistent partial arrangements in each square, this
method finishes its calculation in close to the square root of the time it would take to con-
struct all the consistent partial arrangements explicitly. The following algorithm takes this
approach a step further. It takes any bipermutation as input and decides on one pseudoline
to split the problem along (similarly to how we were going to split the 4×8 region into two
4× 4 regions). The numbers of consistent partial arrangements of the two sub regions will
be calculated recursively, which is only possible with this more general algorithm.

a

b

c

d

a

c

d

b

c

c

b

bd

d c

∂U

b

b

c

Figure 12: The given partial arrangement of n = 4 pseudolines is split along the pseudoline ℓa. This yields
two partial arrangements of at most n− 1 pseudolines. If ℓb and ℓc were crossing on the other side of ℓa, two
different partial arrangements would be created.

Splitting the Problem

Let σ be the bipermutation, of which we want to calculate the number Bσ . All operations in
the final algorithm will be on the level of bipermutations, not partial arrangements. However
it is very useful to conceptualize the steps in terms of partial arrangements. LetA be any par-
tial arrangement consistent with σ and let U be a disc containing all of the crossings inA. We
will first explain, what it means to split A along a pseudoline ℓa, see Figure 12. Let UL, UR

be the two connected components of U \ ℓa and let AL, AR the two partial arrangements that
A\ℓ induces on UL and UR. Finally let σL(A), σR(A) be the bipermutations of these induced
arrangements. The result of splitting A along ℓ are the two partial arrangements AL, AR.
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Splitting the problem of calculating Bσ along the element a means constructing not just the
pair (σL(A),σR(A)), but constructing the set {(σL(A′),σR(A′)) | A′ is consistent with σ}
of all such pairs resulting from partial arrangements consistent with σ .

The Recursion Step by Step

The first step is to choose an element a along which to split the problem. We want both of the
subproblems to be as small as possible. There are different ways to specify this condition.
Given a pseudoline ℓ the partial arrangement A splits into two partial arrangements A1, A2

of k1, k2 pseudolines, respectively, where k1 ≥ k2. We will prefer ℓ to another pseudoline ℓ′

with corresponding data (k′1,k
′
2), where k′1 ≥ k′2 if

(k1,k2)≤ (k′1,k
′
2) :⇐⇒ k1 < k′1 ∨ (k1 = k′1 ∧ k2 ≤ k′2).

This amounts to focusing on the size of the larger of the two components and only consid-
ering the smaller ones when comparing two pseudolines that produce larger components of
the same size. Of course our algorithm does not depend on the choice of A. The values
(k1,k2) can be computed from σ directly as follows. Each element a ∈ [n] splits σ into two
sections (b1, . . .bi), (c1, . . .c j) of lengths i, j ∈ [2n] such that σ = (a,b1, . . .bi,a,c1, . . .c j)

after an appropriate shift operation. Let α be the number of elements crossing a in σ . That
is the number of elements that appear both in (b1, . . .bi) and in (c1, . . .c j). Now the sizes
{k1,k2} of the subproblems produced by a split along the pseudoline corresponding to a in
any consistent partial arrangement are { i+α

2 , j+α

2 }, compare Figure 12.

Next we need to construct all possible bipermutations that can result from the split. Let
ηa(A) record the order in which the other pseudolines in A cross the pseudoline ℓ corre-
sponding to a. The bipermutation of the two subproblems produced by a are

σL(A) = (b1, . . .bi,ηa(A)),

σR(A) = (η̃a(A),c1, . . .c j),

where η̃a(A) is ηa(A) in reversed order, compare Figure 12. We observe that there are
restrictions (applying to all consistent partial arrangements) on the order in which the pseu-
dolines crossing ℓ can do so. Let p1, p2 be the two intersections of ℓ and ∂U . Let ℓi, ℓ j be two
pseudolines crossing ℓ. If ℓi, ℓ j themselves do not cross and ℓi comes before ℓ j when walking
along ∂U from p1 to p2, then ℓi also must come before ℓ j when walking along ℓ. This gives
rise to a partial order P on the set of pseudolines crossing ℓ, see Figure 13. All orderings in
the image of ηa have to respect this partial order. On the other hand, every such ordering is
realized by at least one consistent partial arrangement, which follows quickly from Propo-
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sitions 1 and 2. Therefore the image of ηa is exactly the set T of linear extensions of P.
With this we can construct the bipermutations σL(t),σR(t) of the left and right sides for each
t ∈ T . Finally, we calculate BσL(t),BσR(t) for all t ∈ T recursively and return the recombined
results Bσ = ∑t∈T BσL(t)BσR(t).

l1

l2

l3

l4

l
∂U

P

p1

p2

Figure 13: The partial arrangement will be split along ℓ. The order in which the pseudolines ℓ1, ℓ2, ℓ3, ℓ4 cross
ℓ has to be compatible with the partial order P. For example: ℓ1 has to come first in any consistent partial
arrangement, but whether ℓ2 comes second, third or fourth depends on the partial arrangement.

Storing Intermediate Results

This algorithm can be improved by storing the Bσ after they are first calculated instead of re-
calculating them whenever they appear. This was also suggested by Scheucher. Particularly
bipermutations on a smaller number of elements tend to appear very often in the recursion.
For two bipermutations σ ,σ ′ that can be transformed into each other by a combination of
shift, reflection and relabeling of the pseudolines we have Bσ = Bσ ′ . Therefore it is more
efficient (at least in terms of the number of times our main function is called) to get a unique
representative of each such class of bipermutations and only save the result once. As a
representative we will choose the lexicographically least member of the class. Note, that
each class contains at least n! members, since any permutation of the elements will result
in a distinct bipermutation in the same class. Now we can use a trick, so we don’t have to
iterate over all of those members.

We endow the set [2n] with the metric defined by

d(i, j) := min(| j− i|, 2n−| j− i|), i, j ∈ [2n].

It is the natural metric on the set of vertices of a cycle graph of length 2n. Given a bipermu-
tation σ ∈ S(2)n we define a function dσ : [n]→ N by
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dσ (a) := diam(σ−1(a)), a ∈ [n],

where the diameter is with respect to the metric d on [2n]. More explicitly, if σ(i)=σ( j)= a,
then dσ (a) = d(i, j). We will call dσ the diameter function and (by a slight abuse of notation)
its value dσ (a) the diameter of a.

Let a be an element for which dσ is minimal and let {i, j} := σ−1(a), i < j. We can
assume i = 1 and dσ (a) = j− 1 otherwise shift appropriately. If we start relabeling σ

greedily with respect to the lexicographical ordering, we acquire a new bipermutation σ ′ =

(1,2,3, . . .dσ (a),1,∗ ∗ ∗). The section (1, . . .dσ (a),1) cannot be improved upon, since that
would require an element of smaller diameter than a. Switching i and j using a reflection and
greedily labeling the resulting bipermutation leads to another candidate for the representa-
tive. We also could have started with a different minimal element. That results in at most 2n

candidates to check, which is much better than n!. In the worst case it takes 2n comparisons
between bipermutations, so O(n2) operations in total. In practice this worst case is very rare.
Empirically there are about 1.4 minimal elements on average, when working with the partial
arrangements we needed for our proof, which had up to 30 pseudolines.

1: function CALCULATE B(σ )
2: NumberOfLines← |σ |

2
3: if NumberOfLines≤ 2 then return 1
4: if ALREADY CALCULATED(σ ) then return STORED VALUE(σ )
5:
6: a← SELECT CURVE LABEL(σ )
7: P← GET PARTIAL ORDER ON CROSSING CURVES(a,σ )
8: T ← COMPUTE ALL LINEAR EXTENSIONS(P)
9:

10: return ∑t∈T CALCULATE B(σL(t)) · CALCULATE B(σR(t))

Algorithm 1: The algorithm described in the above section. A C++ implementation of the algorithm can be
found in this github repository: https://github.com/corteskuehnast/PLA
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5 Conclusion and Outlook

We have used an approach based on partial arrangements to bound from below the number
of pseudoline arrangements, yielding the new bound Bn ≥ 20.2144n2

for all sufficiently large
n. As part of our approach we studied partial arrangements in detail, proving some general
properties of partial arrangements and bipermutations. In addition we provided an algorithm
to calculate the number of partial arrangements consistent with a given bipermutation, which
was also central to the approach.

Some rough preliminary estimates suggest that applying this method to constructions with
more slopes (such as those used in [1]) would lead to more significant improvements to the
lower bound, but would also require a lot more attention to detail, since the regions in those
constructions are not as regular.
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A Tables of Values of Bσ

The following tables contain some data that was needed to prove Theorem 3. In the proof
we derived the lower bound

log2 F4(n)≥ n2
(

log2(Bσ3(q))

25q2 +
log2(Bσ4(p))

24 p2

)
−O(n)

on the number of possible interactions between the strips of pseudolines. This can be trans-
lated into the bound

csup ≥
4
3

(
log2(Bσ3(q))

25q2 +
log2(Bσ4(p))

24 p2

)
= c4 + c3

with

c4 := c4(σ4, p) :=
4
3

log2(Bσ4(p))

24 p2 ,

c3 := c3(σ3,q) :=
4
3

log2(Bσ3(q))

25q2

using Lemma 2. The bounds c4, c3 on csup can be interpreted as the bounds one would get
by focusing solely on the region R4, R3 and only using that it is possible to fill in the other
region.

We display these bounds, as well as the corresponding Bσ4(p), Bσ3(q), for some choices
of p, q in the tables below. Since the bipermutations σ4, σ4 themselves are too long to
comfortably fit the page, we will refer to them using only the sidelengths of the regions they
are induced by, see Figure 10. Note, that the sidelengths in Table 1 are with respect to the
grid that is formed by the secondary lines. To get the geometric length just multiply by

√
2

2 .
We also show the time spent calculating the Bσ using the algorithm described in Section 4.2.
More specifically we used the C++ implementation of the algorithm that can be found in this
github repository https://github.com/corteskuehnast/PLA. There the σ4 are also present. All
calculations were done on the compute cluster of the TU Berlin.
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R4
side length p Bσ4(p) c4 time

2 82 0.1324 0s
4 346814370 0.1477 0s
6 168954585739676481488 0.1555 275s
8 10233480626615962155895931163981261674 0.1600 ∼18h1

R4 (rectangular regions)
side lengths Bσ4(p) c4 time

2×3 890 0.1360 0s
3×4 1810562 0.1443 0s
4×5 67355906900 0.1498 0s
4×7 2559684720337354 0.1523 2s
4×9 97487823328918489282 0.1537 7s
5×6 69013961584897708 0.1553 8s
6×7 611720737105383837357810 0.1567 138s
7×8 141024673497994643753371170615708 0.1589 ∼3h2

Table 1: A table of Bσ4(p) for some σ4 of the type used in the proof of Theorem 3. The entry used in the
proof is from the p = 8 row. To provide more context we also included some data resulting from rectangular

regions, instead of squares. With the side lengths p1× p2 we derive the lower bound csup ≥ c4 := 4
3

log2(Bσ4(p1,p2
)

24 p1·p2
analogously to the square case.

R3
side length q Bσ3(q) c3 time

2 20 0.0450 0
3 1320 0.0479 0
4 592116 0.0499 0
5 1822326492 0.0512 0
6 38646198270218 0.0522 1s
7 5660877091974830660 0.0529 5s
8 5735809610253552915456670 0.0535 237s
9 40240394566420231438640750723072 0.0540 632s

10 1956055471674766249002559523437101670400 0.0543 ∼ 6h2

Table 2: A table of Bσ3(q) for some σ3 of the type used in the proof of Theorem 3. The entry used in the proof
is from the q = 10 row.

1This problem was split into 64 sub problems that were calculated separately. Calculating it in one go would
take longer, but likely not 64 times longer, since memory was not shared between the sub processes.

2This problem was split into 100 sub problems.
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Zusammenfassung

In dieser Arbeit wird die neue untere Schranke Bn ≥ 2cn2−O(n log(n)) für ein c > 0.2144 der
Anzahl Bn an Äquivalenzklassen von markierten Arrangements gezeigt. Bisher bekannt war
c > 0.2083. Der Beweis beruht auf der Einteilung der Ebene in Flicken. Mittels Computer-
berechnungen wird die Anzahl an Möglichkeiten berechnet, wie sich die Pseudogeraden in
einem Flicken verhalten können. Dabei ist das Verhalten am Rand der Flicken vorgegeben.
Das Zusammensetzen dieser Flicken erzeugt dann die benötigte Anzahl an Arrangements.

Dazu werden partielle Arrangements und ihre Bipermutationen definiert, die die Idee der
Flicken präzisieren. Einige grundlegende Eigenschaften von partiellen Arrangements wer-
den gezeigt, die später in den Beweis der neuen Schranke einfließen. Schließlich wird ein
Algorithmus zur Berechnung der Anzahl an Möglichkeiten in einem Flicken angegeben.
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